An Improved Mellor–yamada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog

نویسندگان

  • MIKIO NAKANISHI
  • HIROSHI NIINO
چکیده

This note describes a numerically stable version of the improved Mellor–Yamada (M–Y) Level-3 model proposed by Nakanishi and Niino [Nakanishi, M. and Niino, H.: 2004, Boundary-Layer Meteorol. 112, 1–31] and demonstrates its application to a regional prediction of advection fog. In order to ensure the realizability for the improved M–Y Level-3 model and its numerical stability, restrictions are imposed on computing stability functions, on L/q, the temperature and water-content variances, and their covariance, where L is the master length scale and q2/2 the turbulent kinetic energy per unit mass. The model with these restrictions predicts vertical profiles of mean quantities such as temperature that are in good agreement with those obtained from large-eddy simulation of a radiation fog. In a regional prediction, it also reasonably reproduces the satellite-observed horizontal distribution of an advection fog.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A synoptic-climatology approach to increase the skill of numerical weather predictions over Iran

Simplifications used in regional climate models decrease the accuracy of the regional climate models. To overcome this deficiency, usually a statistical technique of MOS is used to improve the skill of gridded outputs of the Numerical Weather Prediction (NWP) models. In this paper, an experimental synoptic-climatology based method has been used to calibrate, and decrease amount of errors in GFS...

متن کامل

Planet Boundary Layer Parameterization in Weather Research and Forecasting (WRFv3.5): Assessment of Performance in High Spatial Resolution Simulations in Complex Topography of Mexico

This paper presents the application of the Weather Research and Forecasting (WRF version 3.5) with high spatial resolution (3 and 1 km) testing four Planet Boundary Layer (PBL) schemes to the complex topography of Mexico in different numerical experiments that have tried to find the best configuration. The WRF is a Numerical Weather Prediction (NWP) model giving support for weather forecasting ...

متن کامل

Influence of Thermal Radiation Models on Prediction of Reactive Swirling Methane/Air Flame in a Model Gas Turbine Combustor

 A numerical simulation of reactive swirling methane/air non-premixed flame in a new three-dimensional model combustion chamber is carried out to assess the performance of two thermal radiation models, namely, the Discrete Transfer Radiation Model and the P-1 Model. A Finite Volume staggered grid approach is employed to solve the governing equations.The second-order upwind scheme is applied for...

متن کامل

A combined Wavelet- Artificial Neural Network model and its application to the prediction of groundwater level fluctuations

Accurate groundwater level modeling and forecasting contribute to civil projects, land use, citys planning and water resources management. Combined Wavelet-Artificial Neural Network (WANN) model has been widely used in recent years to forecast hydrological and hydrogeological phenomena. This study investigates the sensitivity of the pre-processing to the wavelet type and decomposition level in ...

متن کامل

Artificial Neural Network Modeling for the Management of Oil Slick Transport in the Marine Environments

Due to an increase in demand of petroleum products which are transported by vessels or exported by pipelines, oil spill management becomes a controversial issue in coastal environment safety as well as making serious financial problems. After spilling oil in the water body, oil spreads as a thin layer on the water surface. Currents, waves and wind are the main causes of oil slick transport. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006